以史为鉴:提供各个学科的历史信息!
当前位置:首页谷超豪传

谷超豪《一、开创数学“金三角”》生平事迹

作者:主编 时间:2022年12月10日 阅读:229 评论:0

谷超豪的弟子李大潜院士说:“说谷先生是一位数学家,还不如说他是一位数学领域的战略家,总是能高瞻远瞩地看到数学未来的发展,而且,他总能看到国家发展的重大需求,通过需求来引领数学研究的未来。”
谷超豪的学生,复旦大学副校长陈晓漫则如是说:“数学学科发展到今天就像一棵枝繁叶茂的大树,一般研究者能在其中一个分枝上摘到果子就很不容易了,但谷先生却是少有的多面手,他同时在三个最主要的枝干上都获得了丰收。”
法兰西科学院院士肖盖曾这样形容谷老的工作风格:“独特,高雅,深入,多变”。如果说前三者是许多杰出科学家的共性,而“多变”则恐怕是谷老学术生涯的一大特点了。
谷超豪就是这样一位数学上的战略家、多面手和多变者。他将微分几何、偏微分方程和数学物理这三个没有多大联系甚至会让人“迷路”的“百慕大三角”亲昵地称为“金三角”。在这里,谷超豪发现了挖掘不尽的宝藏,成就了他数学事业的辉煌,更成就了国家科技事业的繁荣发展。
谷超豪早期的研究工作主要在微分几何方面。大学毕业后不久,他在苏步青教授的指导下,在K-展空间微分几何学方面取得了系统的研究成果,引起了国际同行的注意,其代表性的论文是《隐因数方程式表示下的K-展空间理论》。接着,他又从事仿射联络空间和芬斯拉空间研究,包括整体的嵌入问题等,得到了很有意义的成果。随后,他的主要研究方向转向众所公认的图形领域“无限连续变换拟群”,取得了突出的成就,发表了《论变换拟群的若干通性及其在微分几何中的应用》。为此,莫斯科大学授予他物理数学科学博士学位。当时的评述人认为,他的工作是E.嘉当以后这个方向上的一项重要进展。谷超豪不仅对迷向群和变换拟群的关系作了深入的探讨,还在黎曼几何和辛尺度几何方面作了深入的研究,并得到了重要的应用。后来胡和生利用他所提出的理论,原则上完全决定了黎曼空间完全运动群的所有空隙。有关齐性黎曼空间的结果,整理在其专著《齐性空间微分几何学》(上海科技出版社,1964年)中,有一定的影响。此外,谷超豪在1959年回国后,还找到了能作为无限连续群的迷向群的所有实不可约线性群,比国外的有关工作早了5年

微分几何


(1)一般空间微分几何学
19世纪出现的黎曼几何学,是以定义空间相邻二点距离平方的二次微分形式为基础建立起来的。二十世纪以来,由于黎曼几何在广义相对论中成功应用的刺激和推动,产生了诸如芬斯拉空间、嘉当空间以及道路空间、X展空间等通称为一般空间的微分几何学。以苏步青为代表的中国微分几何学家对一般空间的微分几何学作出了突出的贡献,其中也包括了谷超豪的许多工作,例如对仿射联络空间和芬斯拉空间的整体安装问题。特别对由美国数学家J.道格拉斯(Douglas)最早提出的、用一组完全可积的偏微分方程组定义的久展空间,谷超豪另辟路径,用隐函数方程进行了研究,从而以相当新颖的形式导出了久展微分方程的可积条件,得到了空间的射影联络,并相当方便地证明了关于平面公理的定理,对A展空间的几何学作出了贡献。1956年,苏联《数学评论杂志》曾登载长篇评论,介绍了谷超豪的这一工作。
(2)无限连续变换拟群和齐性黎曼空间
无限维的连续变换拟群,首先是S·李(Lie)提出的,嘉当对其作了重大发展。1957年,苏步青曾对谷超豪说,嘉当的工作经过后人的努力都得到了重大的发展,但变换拟群理论却是例外。谷超豪到苏联后,利用那里的条件,抓住这个课题,分析了结构常数的几何意义,对迷向群分为直积并具有不变向量的情况作了细致的分析,并将其应用于具辛尺度的空间和齐性黎曼空间,获得了很有意义的成果。正如他的博士论文答辩评语所指出的:“谷超豪在E·嘉当之后,第一个对变换拟群的理论作出了重要的推进。”
此外,决定能作为迷向群的线性群,在无限连续变换拟群理论中起着关键的作用。嘉当曾利用复数域上的半单纯李代数的表示理论,决定了所有能作为无限连续群的迷向群的不可约(复)线性群。对于实不可约线性群的情况,是由谷超豪彻底解决的。
上述两方面的工作,都是对嘉当方法与结果的重要推进

偏微分方程


1956年,谷超豪作为复旦大学副教授,是古典微分几何学派的中坚人物。他参与了国家第一个十年科学规划纲要的制订。当时,由于我国在计算数学、概率论、偏微分方程等方面都比较薄弱,所以科学规划纲要提出,要在这些领域有所突破。1958年,苏联发射了第一颗人造卫星,开辟了星际航行的时代。远在莫斯科大学力学数学系进修的谷超豪敏锐地从中看到了偏微分方程这块国内数学领域的薄弱园地极需要发展。因为偏微分方程是数学和物理科学、工程科学沟通的桥梁,在国际上已有几十年的研究历史,而我国当时的数学研究却偏重理论,离实际应用很遥远,而且理论研究也并不全面。因此他除了完成规定的课程以外,还有意识地学习偏微分方程,并听了一些与高速飞行器密切相关的流体力学课程。
早在1960年到1965年间,谷超豪已经在混合型偏微分方程方面取得了重要突破。从亚音速飞行器到超音速飞行器,这一过渡过程所对应的数学基础正是混合型偏微分方程,谷超豪对此的研究是先驱性的。可惜的是,由于当时中外学术交流所限,国际学界并未及时知晓他的成果。1973年,美国数学家代表团到复旦大学访问时才惊讶地发现他们刚刚完成的研究,谷超豪在10多年前就已经做出来了。
1959年,谷超豪拿到了博士学位,他惦念祖国的科技发展,毅然放弃了前苏联良好的研究环境,选择了回国。此时,他的研究能力和成就已经接近微分几何研究领域的顶峰了,如果继续从事微分几何研究,很快就会有新的成就。但他却不这样想,他认为,基础数学和应用数学虽然都很重要,但此时国家需要的是能够从理论运用到实践的数学,自己有这个想法,也有这方面的能力,就有责任带领同仁填补上国内偏微分方程的空缺。他把微分几何交给学生继续做,然后带着当时复旦大学数学系的几个年轻人一起转向了偏微分方程,其中一位就是李大潜。
李大潜如今已是中科院院士,复旦大学教授。他回忆那段时光,说道:“其实,当时国际上的数学主流研究还是线性方程,相关的文献浩如烟海,花费两三年时间可以做很多事情,用现在的时髦话来说,就是可以发很多顶尖的文章。但是谷先生回来后就高瞻远瞩地把研究方向定在和高速飞行器相关的超音速绕流问题上,属于非线性偏微分方程。这在当时是很难的技术难题,现在也仍然是很难的尖端技术问题。他带着我们花了一年时间就有了重大突破。15年后,当美国的希弗教授得知这些成果后,大为惊奇,因为他刚刚做完了平面机翼超音速绕流解的存在性的数学证明,想不到这个困难问题早已被谷超豪解决了,而且由他所领导的集体得到了很大的发展。”
(1)拟线性双曲型方程组
对气体动力学方程组相应于激波现象的间断解的研究,最早可追溯到G·F·B·黎曼(Riemann,1860)。到二十世纪40—50年代,出现了R·库朗(Courant)和K·O·弗里德里希斯(Friedrichs)的经典著作《超音速流与激波》(Supersonicnow and shock Waves),并掀起了研究拟线性双曲组的间断解的热潮。在单个方程方面,二十世纪50年代已在理论上得到了完满的解决;但在方程组方面,当时大家还只对分段常数的数据及直边界的情形能得到结果。而像平面超音速尖头绕流这类重要的实际问题,却只有弯曲边界及非常数的数据,如何确定含微波的流场,成了迫切需要解决的问题。谷超豪在60年代初期就针对等嫡及不等熵这两种情况分别成功地解决了上述的绕流问题。事隔十几年之后,美国数学家G·谢菲尔重新得到这一结果。谷超豪和他的合作者还系统地解决了可化约双曲组具分段光滑初始数据的初值问题(广义黎曼问题)的局部间断解的构造问题。这些都是关于拟线性双曲组的局部间断解理论的最早结果。在这些研究中,通过适当变换将未知的激波变为已知的边界以及设法化约掉中心波的多值性奇点的思想方法,一直在间断解的研究中发挥着作用。在这些工作的基础上,他的学生对一般的二自变数的拟线性双曲组建立了关于局部间断解的完整理论。谷超豪还对现今已有很大发展的拟线性双曲组的整体经典解理论做了先驱性的工作——他在1960年发表的一篇论文中,就已对拟线性可化约双曲组的柯西问题给出了在6>0上存在整体经典解的一个充分性条件。4年后,即1964年,美国著名数学家P·D·拉克斯(Lax)给出了一个类似的结果。
(2)正对称方程组理论
正对称方程组理论是美国著名数学家弗里德里希斯于1958年提出来的,它突破了偏微分方程古典分类的限制,借助于能量积分的方法,用统一的观点处理一大类偏微分方程的定解问题,有着广泛的应用。但原有的理论只限于线性的情形,而且只停留在广义解的范围。谷超豪在1963—1964年间,首先建立了正对称方程组的高阶可微分解的理论,为利用这一理论得到偏微分方程的经典解奠定了基础,并由此建立了拟线性正对称方程组的理论,还对许多重要的偏微分方程指明了化为正对称组的可能性及具体方法,大大充实和拓宽了正对称方程组理论的框架和应用范围,将这一理论推进到一个新的高度。
(3)混合型方程
混合型偏微分方程是受跨音速流动的推动而发展起来的。自1923年意大利数学家F·G·特里科米(Tricomi)发表第一篇混合型方程的文章到二十世纪50年代末这几十年间,混合型方程虽引起了人们的重视,但由于问题的复杂性和缺乏有力的工具,一直未有长足的进步,绝大多数研究集中在对一些二自变数的特殊的二阶线性方程(如特里科米方程等)的个别定解问题上,而且结论也相当零碎。谷超豪在二十世纪60年代中期成功地将由他所发展的正对称方程组的理论应用于混合型方程的研究,将相当广泛的一类二阶多元线性与拟线性混合型方程,特别是与锥形体超音速绕流密切相关的布斯曼(Busemann)方程,化为正对称组,得到一大批可解的定解问题,证明了经典解的适定性,并深刻揭示了混合型方程的低阶项对定解条件的提法及解的正则性的本质影响。这一对多元混合型方程以及拟线性混合型方程的开创性研究,改变了混合型方程研究的面貌,赢得了国际数学界的高度评价。弗里德里希斯认为谷超豪实现了他将正对称方程组用于混合型方程的夙愿。1976年,美国数学家代表团访问中国后,也称赞谷超豪的工作“十分新颖和相当重要”。1982年,谷超豪又将多元混合型方程的理论从二阶推广到高阶的情况,对高阶多元混合型方程做出了先驱性的工作。谷超豪还和合作者一起进行了钝头物体超音速绕流的计算,给出工程上所需要的数值结果。
(4)微分几何与数学物理中的非线性嫡微分方程
调和映照作为某一作用量的极值,是测地线、极小曲面等概念的扩充。以往的研究均限于具有正定度量的黎曼空间上的调和映照问题,相应于对某一类椭圆型方程组的求解。谷超豪于1980年首先研究了从二维闵可夫斯基(Minkowsky)空间BI到任何完备黎曼流形的调和映照,将问题化为求解一个有端由解的一阶偏导数的二次项所组成的二阶半线性双曲组的初值问题,借助于几何上的考虑,证明了经典解的整体存在性,并由此揭示了一维非线性—模型若在某一时刻无奇性,则其过去及未来均无奇性的事实。这一出人意料的深刻结果开创了调和映照领域的一个新的研究方向,在国际上引起很大的反响,并诱发了进一步的工作。谷超豪还和法国科学院院士Y·舍盖夫人(Choquet·Bruhat)合作研究了从四维闵可夫斯基空间到对称空间的双曲调和映照问题,在小初值的假设下得到解的整体存在性。
二十世纪80年代中期以来,谷超豪还系统研究了与弦运动有关的四维闵可夫斯基空间中的类时极值曲面,并首先研究了同时包含类时、类光与类空部分的混合型极值曲面。这一研究同样涉及到拟线性的混合型方程,谷超豪从零长解析曲线出发,提出了一个统一的构造方法,不仅得到了整体的精确解,而且在双曲域中证明了解的解析性(c’解必为解析)。他还提出了混合型极值曲面的一些边值问题,特别是制作通过给定边界曲线的极值曲面的问题,并证明了边界曲线为不封闭的零长曲线时解的存在性。
谷超豪密切注意这种微分方程组和流体力学之间的联系,然后和学生们合作,解决了间断初始值局部解存在性问题,写成论文《拟线性双曲型方程组的不连续初始值问题》、《双曲型方程组的一个边界问题和它的应用》,解决了超音速机翼绕流的数学问题。他的学生李大潜、俞文在这些工作的基础上,完整地建立了二自变数拟线性双曲型方程组的边值问题局部解的理论。
接着,谷超豪在高音速的锥形流和跨音速流问题的教学研究中,遇到了混合型方程的边值问题。他致力于发展1958年弗里德里希斯所提出的正对称方程组的理论,于是把当时已有的一阶可微性理论发展为高阶可微性的理论,从而成为一项讨论线性方程以及拟线性方程经典解存在性的有效工具。在论文《一类多自变数的混合型偏微分方程》中,他建立了一大类多自变数的混合型方程的解的存在性定理。同时,他还发现了一个新性质:对这种二阶方程,有某些闭区域,即使在边界上给出两个边界条件,解仍然存在而且是唯一的,如果变动一下方程的低阶项,不给定边界条件,解也只能有一个。这些成果也是二十世纪70年代美国数学家代表团访问中国时才被世界所发现的

数学物理


1974年,诺贝尔物理学奖获得者杨振宁到复旦大学做规范场理论报告,他说,他发现规范场理论研究基本粒子结构及其相互作用的规律,牵涉到一系列复杂的现代数学。当时,杨振宁的父亲杨武之是复旦大学数学系教授,杨武之向他推荐了复旦大学微分几何研究组。在报告会上,谷超豪等数学系、物理系的教师作出了热烈反响,使杨振宁认识到复旦的数学家们不仅有雄厚的理论基础和研究能力,还有对现代物理学问题的深入了解。于是,杨振宁决定和复旦大学进行合作。复旦方面成立了联合研究小组,谷超豪是这一学科的带头人,谷超豪的妻子胡和生先生一直致力于微分几何的研究,在这一团队中也是领军人物。


在课堂上


“刚开始,我们先听他做报告,然后开始讨论,他给我们提出了一些问题,当天,我和胡和生就做出了两项研究成果。第二天跟他讲,他觉得非常高兴。他原先没有料到,复旦有人懂他的东西。”谷超豪这样回忆说。
当时,杨振宁提出了一个“洛仑兹规范”的存在性问题,谷超豪和胡和生当天就解决了。几天后,谷超豪和胡和生就以规范场的数学结构获得了两项研究成果,在国际上最早证明了杨-米尔斯(Mills)方程的初始问题的局部解的存在性,又弄清了无源规范场和爱因斯坦引力论的某些联系和区别,所得的结果远远早于国际上有关的工作。他总结了规范场的研究成果,谷超豪团队将这一理论成果写成专著《经典规范场理论》。世界著名的《物理学报告》用整整一期的篇幅刊登这一专著,并在英文全文之前刊印了一份中文摘要,这是谷超豪首次在外国科学期刊上看到自己祖国的文字,很是开心。通过这些研究,谷超豪还从物理学中又提炼出了“波映照”问题,得到的结果又引发了一批国际学者进行后续研究。这以后,杨振宁又两次来复旦大学合作研究,都取到了很有意义的成果。
(1)规范场
规范场理论源于电磁场,是物理学家杨振宁和R·L米尔斯(Mils)于1954年提出的,又称杨-米尔斯场。二十世纪60年代后期,物理学家L·格拉肖(Glashow)、S·魏因伯格(welnberg)及A·萨拉姆(salam)利用这一理论所建立的弱相互作用与电磁相互作用的统一理论已为实验所证实,而规范势的概念又和数学中纤维丛上的联络相对应,这使规范场的研究进一步引起了学界的重视。
1974年,杨振宁到复旦大学访问,发现谷超豪对规范场有自己的见解,能够理解他所用的物理语言,也能用物理学家便于接受的语言来表达深奥的数学思想,于是,他与谷超豪开始了他认为是“卓有成效的合作”。杨-米尔斯方程是关于规范势的一组非常复杂的二阶非线性双曲型方程组,对它的初值问题,谷超豪与杨振宁于1975年最早证明了其局部解存在的唯一性。杨振宁曾用他所提出的道路位相因子来研究规范场。谷超豪于1976年建立了(闭)环路位相因子的方法,成功地将纤维丛中的和乐群理论应用到规范场的研究之中,并证明了利用某些标准环路的位相因子和规范场强可唯一地决定规范势。这一方法在其后的研究中得到了广泛的应用。
谷超豪还和胡和生合作,利用李群的理论,完全决定了球对称规范场的一般结构及其分类,并给出规范势的具体表达式,为具体决定规范场作出了贡献。谷超豪给出一般紧致李群的规范场关于希格斯(Hlggs)场的分解,从而得出了磁单极和拓扑荷,并给出了拓扑荷的数值及几何解释。杨振宁曾将谷超豪的这一项研究比喻为“站在高山上往下看,看到了全局”。
(2)孤立子
孤立子理论起源于传播过程中以及相互作用后保持波形不变的孤立波的研究。谷超豪从二十世纪80年代后期开始进入当代非线性科学的这一热门且重要的领域。很多具有孤立子解的非线性偏微分方程可以视为一个线性方程组(称为拉克斯(Lax)对)的可积条件,从而原则上可利用达布(Darboux)变换的方法,由一个已知的解只通过一次积分及每次重复进行的代数运算,构造出一系列新的函数解。但要证明它们就是所考察的那些非线性偏微分方程的解,以往只能对每一具体方程分别进行验算,计算十分冗长,甚至实际上无法实现。谷超豪与胡和生合作,用巧妙的构思给出了普适性的方法,对具有孤立子解的一系列重要的数学物理方程,如肋V梯队、M(dV-SG)梯队以至更广泛的AKNS系统都适用,大大发展了达布变换的方法。在对二阶AI(Ns)系统的达布矩阵的研究基础上,谷超豪和美国数学家D·萨廷根分别独立地给出了一般的n阶AKNS系统的达布矩阵的显式表达式,为n阶AKNS系统中的非线性方程的显式求解提供了一个有效的方法,应用范围十分广泛。
谷超豪还和胡和生合作,对孤立子解的性态进行了研究,揭示了一些有趣的新现象,如周期振荡的孤立波,孤立子相互作用时会产生非弹性散射、无限次碰撞和相互粘合,以及非线性模型的螺旋形的孤立子解等,为孤立波的研究增添了新的内容,受到广泛的重视。
1977年,谷超豪作为中国高等教育代表团成员访问美国。在加州大学柏克莱分校、麻省理工学院、纽约州立大学石溪分校、马里兰大学,谷超豪就偏微分方程和规范场的数学结构用英语做了4次学术报告,受到听讲的数学家、物理学家的欢迎。陈省身教授写信给中科院数学所,赞赏谷超豪的成就。任之恭教授等还向我驻美联络处表示祝贺。访美期间,谷超豪还访问了被誉为国际偏微分方程研究中心的美国纽约大学柯朗数学研究所,拜访了著名老数学家弗里特里克斯——当年,正是他提出了正对称方程组的理论。谷超豪谈到了自己以此理论为工具研究混合型偏微分方程的情况,75岁的弗里特里克斯特别高兴,他说,谷超豪的工作实现了他想把正对称方程进一步用于混合型方程的夙愿。
50多年来,谷超豪在微分几何、偏微分方程和数学物理三个领域作出了重要贡献。他在国内外发表了一百多篇数学论文,并应邀在美国、墨西哥、西德、法国、意大利、日本、英国、苏联、保加利亚等国举行的十多次国际会议上做过大会报告。他曾担任过第二届、第六届国际“双微”会议和非线性物理会议的组织委员会主席以及会议论文集主编。世界著名的北荷兰出版社的学术杂志《物理学报告》用整整一期的篇幅刊载了他的专著《经典规范场理论》。在英文全文之前,还刊印了一份中文摘要,这是他第一次见到外国科学期刊上的祖国文字。此外,他还撰写、编写了《齐性空间微分几何》、《孤立子理论与应用》、《数学物理方程》等。1978年,他的《规范场的数学结构》获得全国科学大会的嘉奖,1982年,以谷超豪为首的偏微分方程和规范场这两个研究项目分别获得国家自然科学二等奖和三等奖。1980年,谷超豪被选为中国科学院学部委员。1985年和1986年,以他为主的研究项目《调和映照与规范场》、《混合型偏微分方程及其应用》又分别获国家教委科学技术进步一等奖。
谷超豪先生后来在接受采访时说:“做数学研究,我有两个特点。一是注意相邻学科对数学提出的问题,希望数学对其他学科能起到作用;二是我喜欢做自己提出的问题,在一个领域获得突破后,我会让学生们继续深入下去,而我会再去做新的东西,在新的领域作出自己的贡献。局外人很难理解在数学这片神奇的国土里探索的错综复杂,就像在崇山峻岭中摸索,忽而山途渺茫,忽而峰回路转。你完全可能在走了一大段路程后,发现竟然回到了原地;你也许走啊、走啊,突然发现了前人的足迹,原来自己还是步了别人后尘。数学家都想走一条自己的路!”谷超豪先生的这一段话,显然是对自己事业的每次转型的最好解答。


第二届华罗庚数学奖

① 《中国科学》,1951。
② 《莫斯科大学》,1959。
③ 中国科学家词典编委会:《中国科学家词典》(现代第二分册),山东科学技术出版社,1985.1. p. 225。
① 《科学家传记大辞典》编辑组:《中国现代科学家传记》第五集,科学出版社,1991.9. p. 34
① 《科学家传记大辞典》编辑组:《中国现代科学家传记》(第五集),科学出版社,1991. 9. p.34
① 谷超豪著:《齐性空间微分几何》,上海科学技术出版社,1965.1
② 与郭柏灵、李翊神、曹策问、田畴、屠规彰、胡和生、郭本瑜、葛墨林合著,浙江科技出版社,1990.9
③ 谷超豪等5人合著,上海科技出版社,1979. 9

本文地址: https://www.yishiweijian.com/guchaohao/20221214882.html

文章来源:主编

版权声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。

相关推荐
  • 最新动态
  • 热点阅读
  • 随机阅读
站点信息集合

关于我们 | 免责声明 | 隐私声明 | 版权声明 | 浙ICP备18038933号-5 | 网站地图

本站转载作品版权归原作者及来源网站所有,原创内容作品版权归作者所有,任何内容转载、商业用途等均须联系原作者并注明来源。